Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field.

نویسندگان

  • Christelle Aurélie Maud Robert
  • Matthias Erb
  • Ivan Hiltpold
  • Bruce Elliott Hibbard
  • Mickaël David Philippe Gaillard
  • Julia Bilat
  • Jörg Degenhardt
  • Xavier Cambet-Petit-Jean
  • Ted Christiaan Joannes Turlings
  • Claudia Zwahlen
چکیده

Genetic manipulation of plant volatile emissions is a promising tool to enhance plant defences against herbivores. However, the potential costs associated with the manipulation of specific volatile synthase genes are unknown. Therefore, we investigated the physiological and ecological effects of transforming a maize line with a terpene synthase gene in field and laboratory assays, both above- and below ground. The transformation, which resulted in the constitutive emission of (E)-β-caryophyllene and α-humulene, was found to compromise seed germination, plant growth and yield. These physiological costs provide a possible explanation for the inducibility of an (E)-β-caryophyllene-synthase gene in wild and cultivated maize. The overexpression of the terpene synthase gene did not impair plant resistance nor volatile emission. However, constitutive terpenoid emission increased plant apparency to herbivores, including adults and larvae of the above ground pest Spodoptera frugiperda, resulting in an increase in leaf damage. Although terpenoid overproducing lines were also attractive to the specialist root herbivore Diabrotica virgifera virgifera below ground, they did not suffer more root damage in the field, possibly because of the enhanced attraction of entomopathogenic nematodes. Furthermore, fewer adults of the root herbivore Diabrotica undecimpunctata howardii were found to emerge near plants that emitted (E)-β-caryophyllene and α-humulene. Yet, overall, under the given field conditions, the costs of constitutive volatile production overshadowed its benefits. This study highlights the need for a thorough assessment of the physiological and ecological consequences of genetically engineering plant signals in the field to determine the potential of this approach for sustainable pest management strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Costs of induced volatile production in maize

Herbivore-induced plant volatiles have been shown to serve as indirect defence signals that attract natural enemies of herbivores. Parasitoids and predators exploit these plant-provided cues to locate their victims and several herbivores are repelled by the volatiles. Recently, benefits, in terms of plant fitness, from the action of the parasitoids were shown for a few systems. However, the cos...

متن کامل

Restoring a maize root signal that attracts insect-killing nematodes to control a major pest.

When attacked by herbivorous insects, plants emit volatile compounds that attract natural enemies of the insects. It has been proposed that these volatile signals can be manipulated to improve crop protection. Here, we demonstrate the full potential of this strategy by restoring the emission of a specific belowground signal emitted by insect-damaged maize roots. The western corn rootworm induce...

متن کامل

Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, tradeoffs and novel methods for studying subterranean herbivory

1. Entomopathogenic nematodes can function as indirect defence for plants that are attacked by root herbivores. By releasing volatile organic compounds (VOCs), plants signal the presence of host insects and thereby attract nematodes. 2. Nonetheless, how roots deploy indirect defences, how indirect defences relate to direct defences, and the ecological consequences of root defence allocation for...

متن کامل

Biosafety Issues in Biotechnology and Engineering of Microorganisms

Currently much debate, attention and concern surrounds the use of genetically modified plants or animals. But there has not been much concern about microorganisms, although we all are aware of the place of microorganisms in the circle of life, their abundance and diversity. There are many examples regarding the application of genetically engineered microorganisms (GEMs), however, like other hig...

متن کامل

Differential Performance and Parasitism of Caterpillars on Maize Inbred Lines with Distinctly Different Herbivore-Induced Volatile Emissions

Plant volatiles induced by insect feeding are known to attract natural enemies of the herbivores. Six maize inbred lines that showed distinctly different patterns of volatile emission in laboratory assays were planted in randomized plots in the Central Mexican Highlands to test their ability to recruit parasitic wasps under field conditions. The plants were artificially infested with neonate la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant biotechnology journal

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 2013